Reducing Overfitting in Deep Networks by Decorrelating Representations
نویسندگان
چکیده
One major challenge in training Deep Neural Networks is preventing overfitting. Many techniques such as data augmentation and novel regularizers such as Dropout have been proposed to prevent overfitting without requiring a massive amount of training data. In this work, we propose a new regularizer called DeCov which leads to significantly reduced overfitting (as indicated by the difference between train and val performance), and better generalization. Our regularizer encourages diverse or non-redundant representations in Deep Neural Networks by minimizing the cross-covariance of hidden activations. This simple intuition has been explored in a number of past works but surprisingly has never been applied as a regularizer in supervised learning. Experiments across a range of datasets and network architectures show that this loss always reduces overfitting while almost always maintaining or increasing generalization performance and often improving performance over Dropout.
منابع مشابه
Understanding Representations and Reducing their Redundancy in Deep Networks
Neural networks in their modern deep learning incarnation have achieved state of the art performance on a wide variety of tasks and domains. A core intuition behind these methods is that they learn layers of features which interpolate between two domains in a series of related parts. The first part of this thesis introduces the building blocks of neural networks for computer vision. It starts w...
متن کاملReducing the Limitation on Application of Synchronous Decorrelating Detector Cdma Systems
In CDMA (Code - Division Multiple - Access) systems multi - user accessing of a channel is possible. Under the assumptions of Optimum multi - user and decorrelating detector in CDMA systems. By using signals with zero and / or identical cross correlations, a simple and expandable decorrelating detector with optimum efficiency which can be easily implemented are proposed. Constructing these sign...
متن کاملKnowledge Projection for Deep Neural Networks
While deeper and wider neural networks are actively pushing the performance limits of various computer vision and machine learning tasks, they often require large sets of labeled data for effective training and suffer from extremely high computational complexity. In this paper, we will develop a new framework for training deep neural networks on datasets with limited labeled samples using cross...
متن کاملKnowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks
While deeper and wider neural networks are actively pushing the performance limits of various computer vision and machine learning tasks, they often require large sets of labeled data for effective training and suffer from extremely high computational complexity. In this paper, we will develop a new framework for training deep neural networks on datasets with limited labeled samples using cross...
متن کاملRegularizing CNNs with Locally Constrained Decorrelations
Regularization is key for deep learning since it allows training more complex models while keeping lower levels of overfitting. However, the most prevalent regularizations do not leverage all the capacity of the models since they rely on reducing the effective number of parameters. Feature decorrelation is an alternative for using the full capacity of the models but the overfitting reduction ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.06068 شماره
صفحات -
تاریخ انتشار 2015